Over 4000 free audio and video lectures, seminars and teaching resources from Oxford University.
Skip to Content Skip to Navigation

Data work: the hidden talent and secret logic fuelling artificial intelligence

Error loading media: File could not be played
Data work: the hidden talent and secret logic fuelling artificial intelligence
Share Video
Share Video
00:00
00:00
 
Duration: 0:47:31 | Added: 16 Feb 2021
Error loading media: File could not be played
Data work: the hidden talent and secret logic fuelling artificial intelligence
Share Video
Share Video
00:00
00:00
 
Duration: 0:47:31 | Added: 16 Feb 2021
Professor Gina Neff discusses artificial intelligence and data work, and the ethical and social implications of integrating these tools into organisations.

What happens when new artificial intelligence (AI) tools are integrated into organisations around the world?

For example, digital medicine promises to combine emerging and novel sources of data and new analysis techniques like AI and machine learning to improve diagnosis, care delivery and condition management. But healthcare workers find themselves at the frontlines of figuring out new ways to care for patients through, with - and sometimes despite - their data. Paradoxically, new data-intensive tasks required to make AI work are often seen as of secondary importance. Gina calls these tasks data work, and her team studied how data work is changing in Danish & US hospitals (Moller, Bossen, Pine, Nielsen and Neff, forthcoming ACM Interactions).

Based on critical data studies and organisational ethnography, this talk will argue that while advances in AI have sparked scholarly and public attention to the challenges of the ethical design of technologies, less attention has been focused on the requirements for their ethical use. Unfortunately, this means that the hidden talents and secret logics that fuel successful AI projects are undervalued and successful AI projects continue to be seen as technological, not social, accomplishments.

In this talk Professor Gina Neff, Oxford Internet Institute and Professor Ian Goldin, Oxford Martin School, will examine publicly known “failures” of AI systems to show how this gap between design and use creates dangerous oversights and to develop a framework to predict where and how these oversights emerge. The resulting framework can help scholars and practitioners to query AI tools to show who and whose goals are being achieved or promised through, what structured performance using what division of labour, under whose control and at whose expense. In this way, data work becomes an analytical lens on the power of social institutions for shaping technologies-in-practice.

Oxford Unit:
Copy and paste this HTML snippet to embed the audio or video on your site:
Copy and paste this HTML snippet to embed the audio or video on your site: